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Abstract

We address key challenges in Dataset Aggregation (DAgger) for real-world contact-
rich manipulation: how to collect informative human correction data and how to
effectively update policies with this new data. We introduce Compliant Residual
DAgger (CR-DAgger), which contains two novel components: 1) a Compliant
Intervention Interface that leverages compliance control, allowing humans to pro-
vide gentle, accurate delta action corrections without interrupting the ongoing
robot policy execution; and 2) a Compliant Residual Policy formulation that learns
from human corrections while incorporating force feedback and force control.
Our system significantly enhances performance on precise contact-rich manipu-
lation tasks using minimal correction data, improving base policy success rates
by over 60% on two challenging tasks (book flipping and belt assembly) while
outperforming both retraining-from-scratch and finetuning approaches. Through
extensive real-world experiments, we provide practical guidance for implementing
effective DAgger in real-world robot learning tasks. Result videos are available at:
https://compliant-residual-dagger.github.io/
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Figure 1: CR-DAgger. To improve a robot manipulation policy, we propose a compliant intervention interface (a)
for collecting human correction data, and use this data to update a compliant residual policy (b), and thoroughly
study their effects by deploying the updated policy on two contact-rich manipulation tasks in the real world (c).

1 Introduction

Learning from human demonstrations has seen many recent successes in real-world robotic tasks [9,
21,41, 48, 42]. However, to obtain a successful policy, human demonstrators often have to repeatedly
deploy a policy and observe its failure cases, then collect more data to update the policy until it
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succeeds. This process is broadly referred to as Dataset Aggregation (DAgger) [36, 23]. However,
doing DAgger effectively for real-world robotic problems still faces the following challenges:

How to collect informative human correction data? DAgger is most effective when the correction
data is within the original policy’s induced state-action distribution [36]. In practice, the common
approach is either (1) collecting offline demonstrations that cover the policy’s typical failure sce-
narios [8], or (2) human taking over robot control during policy deployment [37, 32]. However, in
both cases, the human demonstrator has no access to the original policy’s behavior and may deviate
excessively from it. Human taking over additionally introduces force discontinuity when they do not
instantly reproduce the exact same robot force. This is partially due to the lack of effective correction
interfaces that support precise and instantaneous intervention.

How to effectively update the policy with new data? Prior methods for improving a pretrained
policy with additional data include (1) retraining the policy from scratch with the aggregated
dataset [23], which can be computationally expensive; (2) finetuning the policy with only the
additional data [41, 17, 7], which is sensitive to the quality of the new data [51], and (3) training a
residual policy separately on top of the pretrained policy, which is typically done with Reinforcement
Learning [2, 51] or Imitation Learning [5], both require a large number of samples.

In this work, we address these questions by proposing an improved system Compliant Residual
DAgger (CR-DAgger) consisting of two critical components:

* Compliant Intervention Interface. We propose an on-policy correction system based on kines-
thetic teaching to collect delta action without interrupting the current robot policy. Leveraging
compliance control, the interface lets humans directly apply force to the robot and feel the mag-
nitude of their instantaneous correction. Unlike take-over corrections, our design allows smooth
transition between correction/no correction mode, while providing direct control of correction
magnitudes.

» Compliant Residual Policy. Leveraging the force feedback from our Compliant Intervention
Interface, we propose a residual policy formulation that takes in an extra force modality and
predicts both residual motions and farget forces, which can fully describe the human correction
behavior. The Compliant Residual Policy is force-aware, even when the base policy is position-
only. We show that our residual policy formulation learns effective correction strategies using the
data collected from our Compliant Intervention Interface.

Together, our system significantly improves the success rate of precise contact-rich robot manipulation
tasks using a small amount of additional data. We demonstrate the efficacy of our method on two
challenging tasks involving long horizons and sequences of contacts: book flipping and belt assembly.
We improve over the base policy success rate by over 60%, while also outperforming retrain-from-
scratch and finetuning under the same data budgets. In summary, our contributions are:

* A Compliant Intervention Interface, a system that allows humans to provide accurate, gentle,
and smooth corrections in both position and force to a running robot policy without interrupting it.

* A Compliant Residual Policy, a policy formulation that seamlessly integrates additional force
modality inputs and predicts residual motions and forces.

* A practical guide for efficient DAgger based on extensive real-world studies for critical but often
overlooked design choices, such as batch size and sampling strategy. Our hardware design, training
data, and policy code can be found here.

2 Related Work

Human-in-the-Loop Corrections for Robot Policy Learning. The original DAgger work [36]
requires the demonstrator to directly label actions generated by the policy. In robotics, a practical
variation is to let the human take over the robot control and provide correct action directly [23]. Such
human correction motion can be recorded with spacemouse [7, 29], joystick [37], smartphone [32],
or arm-based teleoperation system [18, 19, 41]. We instead proposes a novel kinesthetic teaching
system with compliance controller that allows the demonstrator to apply delta corrections while the
robot policy is still running, and additionally records force feedback. Our results show that both the
delta correction data and the force data are crucial to the success of the learned policy.

Improving Pretrained Robot Policies with New Data. The most direct approach to improving a
pretrained policy with new correction data is to retrain the policy on the aggregated dataset, combining
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Figure 2: Compliant Intervention Interface characterized by a kinesthetic correction hardware setup where
humans hold on the handle and apply forces to correct robot execution, providing on-policy delta corrections.

prior demonstrations with new feedback [32, 37]. Alternatively, Reinforcement Learning (RL) offers
a framework to incorporate both offline and onlme data, either by warm-starting replay buffers [3 1, 3]
or by using offline data to guide online fine-tuning [49, 43]. When policies are trained on large-scale
human demonstration datasets [0, 38, 25, 34, 24, 44, 45], retraining becomes impractical, especially
when the original data is inaccessible. In such cases, fine-tuning with only the new data is a common
solution, using either imitation learning [29, 17, 41] or RL [33, 7]. Another line of work introduces
an additional residual model on top of the original policy. These residual policies can be trained with
RL in simulation [51, 2, 15], but suffers from sim-to-real challenges. Training residual policy in the
real world usually requires a large number of samples [5, 22], intermediate scene representation [14],
or consistent visual observations between training and testing [13, 16], making the approach hard
to adopt in practice. In this work, we introduce a practical data collection system and an efficient
residual policy learning algorithm for long-horizon, contact-rich manipulation tasks. Our approach
requires only a small amount of real-world correction data and supports integration of additional
sensory modalities not present in the original model, leading to improved policy performance.

3 CR-DAgger Method

Our goal is to improve a pretrained robot policy with a small amount of human correction data. To
achieve this, we propose a Compliant Intervention Interface (§ 3.1) that enables precise and intuitive
on-policy human correction data collection, and a Compliant Residual Policy (§ 3.2) that efficiently
learns the correction behaviors to be used on top of the pretrained policy. Throughout the paper, we
use the term base policy to refer to the pretrained policy without online improvements.

3.1 Compliant Intervention Interface

Correction data is collected by human demonstrators to rectify policy failures. Unlike initial demon-
strations that establish baseline behaviors, correction data specifically targets failure modes observed
during policy deployment. Correction data is most effective when it corrects failures in policy-induced
state distributions [36]. The interface through which these corrections are collected significantly
impacts the quality of correction data, which should be intuitive for demonstrators, capture critical
corrective information at precise moments of failures, and facilitates collecting data close to the base
policy state-action distribution.

There are two types of correction collection methods: Off-policy correction is when humans observe
failures of the base policy during deployment, and then recollect extra offline demonstrations to
address failure cases. This approach is most commonly used for improving Behavior Cloning policy
performance due to its simplicity - it requires no additional infrastructure beyond the original data
collection setup. However, the resulting demonstrations may fail to cover all the failure cases or
deviate from the original state-action distribution. We focus on on-policy correction instead, where
humans can monitor policy execution and intervene on the spot when failures occur or are anticipated.
This approach allows humans to provide corrections more targeted to the base policy’s failure cases.
However, challenges still exist for an intervention system:

* Non-smooth transitions. Intervention in robotics is typically implemented by fake-over correction:
letting human take complete control and overwrite robot policy. As the underlying control abruptly
switches between robot policy and human intention, disturbances are introduced due to policy
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Figure 3: Policy Update Methods. Left: Common policy update methods - retraining and finetuning. Right:
Ours. The base policy runs at 1 Hz. It takes in images I; and proprioceptions F; and predicts 32 frames of
end-effector poses A = {Af.Af,.....Af, } spaced 0.1 Seconds apart. The Compliant Residual Policy runs at 50 Hz.
It takes in additional force inputs F; and predicts 5 frames of delta poses AA = {A4f), A47 |....,A47 ;. } and target
forces A',f spaced 0.02 Seconds apart. The combined poses of A” and AA?, and target forces A',f are taken by an
admittance controller to command the robot.

inference and human response latency, especially when the robot is withholding external forces.
The recorded data thus may include undesired actions that do not reflect the human’s intention.

* Distribution shift. The human-intervened state-action distribution may deviate significantly from
the original distribution. Additionally, the non-smooth transition above could bring in disturbances
and add to the distribution shift.

* Indirect correction brings errors. Correction is commonly implemented via teleoperation
interfaces such as spacemouse or joysticks [17, 7]. With spatial mismatch and teleoperation latency,
it is hard for the demonstrator to instantly provide accurate corrections upon intervention starts
without going through a short adjustment period.

» Missing information. The recorded correction data need to fully describe the human’s intended
action. Simply recording the robot’s position is not sufficient, since it may be under the influence
of human correction force and will cause different result when testing without human.

We propose a Compliant Intervention Interface with the following designs to solve those challenges:

* Delta correction instead of take-over correction. Unlike take-over correction, where the demon-
strator has no idea of the policy’s original intention once taking over, we propose a novel on-policy
delta correction method: we let the robot policy executes continuously while the human applies
forces to the robot with a handle mounted on the end effector, resulting in delta actions on top of
the policy action. The human demonstrator can always sense the policy’s intention through haptic
feedback, and easily control the magnitude of intervention by the amount of force applied to the
handle. As a result, delta correction ensures smooth intervention data and limits the human from
providing very large corrections. The approach is also intuitive as the human can directly move the
robot towards desired correction directions.

* Correction interface with compliance control. In order to apply delta correction over a running
policy, we provide a compliant interface that allows humans to safely intervene and apply force to
the robot to affect its behaviors at any time, as shown in Fig. 2. We design a kinesthetic correction
hardware setup with a detachable handle for human to hold when correcting, and allows easy
tool-swapping for different tasks. We run a compliance controller (specifically admittance control)
in the background to respond to both contact forces and human correction forces, allowing the
human to influence but not completely override the policy execution. The admittance controller uses
a constant stiffness ~1000 N /m to allow easy human intervention and ensure accurate tracking.

* Correction recording with buttons and force sensor. Our interface additionally includes an ATI
6-D force sensor to directly measure contact forces, and a single-key keyboard placed on the handle
to record the exact timings of correction starts/ends. Both the policy’s original commands and the
human’s delta corrections are recorded, along with force sensor readings during the interaction.

3.2 Compliant Residual Policy

Given the correction data, there are multiple ways to update the policy. Common practices include
retraining the base policy from scratch with both initial data and correction data, and finetuning the



base policy with only the correction data. However, retraining is costly as it requires updating the
entire base policy network from scratch with all the available data. It also requires access to the base
policy’s initial training data, which might not be accessible for many open source pretrained models.
The amount of correction data is significantly smaller than the initial training data, thus simply mixing
them together makes the policy hard to gain effective corrective behaviors. While finetuning allows
updating partial policy network parameters with new data only, its training stability can be easily
affected by the distribution mismatch between the correction data and initial training data. Moreover,
both retraining and finetuning can only update the policy with its fixed network architecture while
being unable to incorporate new inputs and outputs. We propose a compliant residual policy trained
only on the correction data to refine base policy’s position actions and predict additional force actions.

Compliant residual policy formulation. Our policy directly learns corrective behavior from the
human delta correction data, as shown in Fig. 3. It takes as input the same visual and proprioceptive
feedback as the base policy but with a shorter horizon. It also takes in an extra force modality,
which is available using our Compliant Intervention Interface. The policy outputs five frames of
actions at a time, corresponding to 0.1 s of execution time when running at 50 Hz. The action space is
15-dimensional: the first nine dimensions represent the SE3 delta pose from the base policy action to
the robot pose command [8], while the later six dimensions represent the expected wrench (force and
torque) the robot should feel from external contacts. Both the robot pose command and the expected
wrench are sent to a standard admittance controller for execution with compliance.

The residual policy directly uses the base policy’s frozen image encoder [35, |, 46] to extract an
image embedding, a temporal convolution network [39] to encode the force vectors, followed by
fully-connected layers to decode actions.

Advantages. This formulation provides the following advantages:

o Sample-efficient learning. The residual policy’s network is light-weight (~2MB trainable weights)
and only requires a small amount of correction data to train (50~100 demonstrations).

* Incorporating new sensor modality. Compared to retraining and finetuning methods that are limited
to the base policy’s network architecture, residual policy can incorporate new sensor modality. This
allows taking any position-based pretrained policy and turning it force-aware simply by collecting
a small amount of correction data with force modality.

* High-frequency inference. The light-weight residual policy runs at a higher frequency than the base
policy, incorporating high-frequency force feedback and enabling reactive corrective behaviors.
This reactivity is particular important for error correction during contact events.

Training strategy. In prior work, a residual policy is trained either in simulation with RL [2, 51] to
give it sufficient coverage of the state distribution, or in the real world with pre-collected behavior
cloning data [31]. In this work, we train the Compliant Residual Policy completely on the small
amount of new real-world correction data with the following strategies:

* Ensure sufficient coverage of in-distribution data. Human correction tends to be frequent around a
few key moments of the task. A residual trained on correction data alone can extrapolate badly
around states where no correction is provided. To help the residual policy understand when not to
provide corrections, we: (1) include the no correction data for training but label it as zero residual
actions; (2) collect a few trajectories where the demonstrator always holds the handle and marks
the whole trajectory as correction even when the correction is small or zero. Details are in § A.3.

* Prioritize correction data over no-correction (zero residual action) data. Similar to [29], we alter
the data sample frequency during training based on whether they have human correction or not.
Specifically, since the moment of correction start indicates where the current policy performs
badly followed by immediate action to fix it, we sample data more frequently for a short period
immediately after correction starts. Our real-world ablations (§ 4.5) demonstrate that our training
strategies improve the quality of the residual policy and the overall success rate.

4 Evaluation

For each task, we train a diffusion policy [8] with 150~400 demonstrations as the base policy. We
first deploy the base policy and observe its performance and failure modes. Next, from the same base
policy, we collect 50~100 correction episodes with each data collection method. Then, we update the
policy using each network updating method and training procedure. Finally, we deploy the updated
policies and evaluate their performance under the same test cases. Details of tasks and comparisons
are described below.
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Figure 4: Book Flipping Task. (a) Policy rollout of [Compliant Residual] policy trained with [On-Policy Delta]
data, demonstrating accurate insertion motions and forceful pushing strategy. (b) Different test scenarios. (c)
Typical failure cases of the base policy: inserting too high above the book and missing the gap; retracting the
fingers before the books can steadily stand.

(a) Base + Compliant Residual Policy Rollout
Thread on 1st pulley Thread on 2nd pulley Pull over 2nd pulley Release

(c) Base Policy Failure Cases
Mised the slot Slipped off the pulley

Figure 5: Belt Assembly Task. (a) Policy rollout of [Compliant Residual] policy trained with [On-Policy Delta]
data, demonstrating accurate force-position coordination and adaptation. (b) Different test scenarios. (c) Typical
failure cases of the base policy: missing the slot by going too high above the pulley; tilting the belt and causing
it to slip off the pulley.

4.1 Contact-Rich Manipulation Tasks

Book Flipping: As shown in Fig. 4 (a), this task is to flip up books on a shelf. Starting with one or
more books lying flat on the shelf, the robot first insert fingers below the book, then rotate the book
up and push them firmly against the shelf to let them stand on their own. The base policy is trained
with 150 demonstrations.

This task is challenging as it involves rich use of physical contacts and forceful strategies [20]. A
position-only strategy always fails immediately by triggering large forces, so we execute all policies
through the same admittance controller. The task success requires high precision in both motion and
force to accurately align the fingers with the gap upon insertion, and to provide enough force to rotate
heavy books and make the books stand firmly.

Each evaluation includes 20 rollouts on 4 test cases (5 rollouts each), as shown in Fig. 4 (b): 1)
flipping a single book (three seen and two unseen books), initially far from the shelf edge; 2) flipping
a single book close to the shelf edge; 3) flipping two books together (combinations of three seen and
three unseen books), initially far from the shelf edge; 4) flipping two books close to the shelf edge.
We use the same initial configurations for all evaluations.

Belt Assembly: As shown in Fig. 5 (a), this task is to assemble a thin belt onto two pulleys, which is
part of the NIST board assembly challenge [26]. Starting with the belt grasped by the gripper, the
robot needs to first thread the belt over the small pulley, next move down while stretching the belt to



thread its other side on the big pulley, then rotate 180° around the big pulley to tighten the belt, and
finally pull up to release the belt from the gripper. The base policy is trained with 405 demonstrations.

The task is challenging as it requires both position and force accuracy throughout the process.
Specifically, the belt is thin and soft so the initial alignments onto the pulleys are visually ambiguous.
Also, since the belt is not stretchable, there is more resistance force and less position tolerance as
the belt approaches the second pulley, requiring a policy with good force-position coordination and
adaptation. We ran 32 rollouts across four different initial board positions and four grasp locations
(Fig. 5 (b)).

4.2 Base Policy and its Failure Modes

We trained a diffusion policy [8] that takes in past images from a wrist-mounted camera and robot
proprioception observations, and predicts a future position-based action trajectory. To isolate the
contribution of force inputs versus human corrections, we trained diffusion policies with and without
force inputs as baselines for the belt assembly task.

The book flipping base policy achieves a 40% success rate with the following common failure cases
(Fig. 4 (¢)): (1) Missed insertion. The fingers initially go too high above the book or aims for the gap
between the two books, failing to properly insert beneath the books. (2) Incomplete flipping. At the
last stage, the policy retracts the blade before the book can stand stably, causing it to fall back.

The belt assembly base policy achieves a 15.6% success rate. Adding force input increases the base
policy success rate to 43.8%. Common failure cases include (Fig. 5 (c)): (1) Missed slotting: the
fingertip goes too high or too low, causing the belt to miss the slot on the big pulley. (2) Belt slippage:
the fingers pull the belt in the wrong direction, causing the belt to tilt and slip off the pulley.

4.3 Comparisons

We compare CR-DAgger with baselines across two dimensions: correction method and policy update
method. We present the quantitative results in Fig. 6, and explain key findings in § 4.4.

Correction data collection methods. We compare our Compliant Intervention Interface with the
two most commonly used correction data collection strategies:

* Observe-then-Collect includes two steps: first, the policy is deployed and human demonstrators
observe the initial settings that could cause failures; then, demonstrators provide completely new
demonstrations starting from similar initial settings. As explained in § 3.1, this type of offline
correction potentially misses critical timing information, and the resulting demonstrations may
deviate from the policy’s original behavior distribution.

* Take-over-Correction (HG-DAgger) [23] is another common correction strategy where human
demonstrators monitor policy execution and take complete control when failures are anticipated.
We implement Take-over-Correction on our Compliant Intervention Interface by cleaning up
command buffer to the compliance controller and switching stiffness to zero upon correction starts,
so the robot policy does not affect the robot during correction. However, as explained in § 3.1,
take-over correction introduces an abrupt transition around control authority switching, which may
cause distributional discontinuities in the training data.

e On-Policy Delta (Ours): the details are described in § 3.1.

Policy update methods. We compare with two common policy update methods:

* Retrain Policy: Retrain the base policy using both the original training data and the correction data
from scratch. As explained in § 3.2, this approach is reliable but may require access to the orignal
data and large amount of new data to work well.

* Finetune Policy: Finetune the base policy using only the correction data (freezing visual encoders).
As explained in § 3.2, this approach can be sensitive to data quality and distribution shifts.

* Fintune Policy with KL Regularization: A recent method [1 1] that stabilizes finetuning training by
encouraging the predicted action to be close to the training data distribution.

* Residual Policy: an ablation of our method where force is removed from both input and outputs.

* Compliant Residual Policy (Ours): Residual policy update with additional force input and outputs,
see details in § 3.2.
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Figure 6: Results. We compare CR-DAgger across two dimensions: correction method and policy update
method. The result shows that our [Compliant Residual (CR)] policy trained with [On-Policy Delta] data is able
to improve upon base policies on both tasks and outperforms other variations.

4.4 Key Findings

Finding 1: Compliant Residual Policy is able to improve base policy by a large margin. As
shown in Fig. 6, [Compliant Residual] policy trained with [On-Policy Delta] data improves the
base policy success rate by 60% and 50% on the two tasks respectively. It effectively learns
useful corrective strategies from the limited demonstrations. For example, in the book flipping task,
the policy learns to pitch the fingers down more before finger insertion to increase the insertion
success; in the belt assembly task, the policy learns to correct the height of the belt when misaligning
to the pulley slot. Results are best viewed in our supplementary video.

Success Rate (%)
Success Rate (%)

Finding 2: Residual policy allows additional useful modality to be added during correc-
tion. [Compliant Residual] policy performs significantly better than other methods without force
(45% higher success rate than the best position-only baseline on the book task and 53% higher
on the belt task) as it can both take in force feedback that indicates critical task information and
predict adequate contact forces to apply. For example, the last stage of the book flipping task requires
the robot to firmly push the book against the shelf wall to let it stand on its own. [Compliant Residual]
policy predicts large pushing forces at this stage to make the books stand stably with a 100% success
rate, while [Residual]’s success rate drops from 70% to 35% (§ A.2). The second stage of the belt
assembly task (threading the belt on the large pulley) requires delicate belt height adjustments under
ambiguous visual information due to occlusions and the lack of depth. [Compliant Residual] policy
learns to move along the pulley to find the slot when the finger touches the top of the pulley.

Finding 3: Smooth On-Policy Delta data enables stable residual policy. [Compliant Residual]
policy has 45% higher success rate when trained on [On-Policy Delta] data instead of [Take-over-
Correction] data on the book flipping task. Residual policy trained with [Take-over-Correction] data
sometimes exhibits large noisy motions that trigger task failures, such as retracting the fingers too
early in the book flipping task. On the contrary, residual policy trained with [On-policy Delta] data
have much smoother action trajectories and better reflect human’s correction intentions, providing
suitable magnitudes of corrections.

Finding 4: Retraining base policy is stable but learns correction behavior slowly. Retraining from
scratch with the initial and correction data together leads to policies with stable motions. However,
its behavior is less affected by the small amount of correction data compared to the dominant portion
of initial data, leading to insignificant improvements over the base policy (1.67% success rate drop
on the book task averaged across all data collection methods, 18.8% success rate improve on the belt
task, both are much less improvements than [Compliant Residual]).

Finding 5: Finetuning base policy is unstable. Policy finetuning with either correction data has the
worst performance across all policy update methods and even underperforms the base policy (30%
success rate drop on the book task averaged across all data collection methods, 15.6% drop on the belt
task). The finetuned policy predicts unstable and noisy motions, quickly leading to out-of-distribution
states, such as inserting too high in the book flipping task and drifting away from the board in the belt
assembly task. This is likely due to the distribution mismatch between the base policy training data
and correction data, causing training instabilities. Adding KL-regularization effectively reduced the
noisy behavior, however, the overall success rate is still lower than other baselines.

4.5 Ablations
We study two important design decisions with ablation studies on the book flipping task.



Training frequency and batch size. One important parameter in DAgger is the batch size be-
tween policy updates. With a smaller batch size, the policy is updated more frequently, then
new correction data can better reflect the most recent policy behavior. However, DAgger with
small batch sizes is known to suffer from catastrophic forgetting [27, 12] since it finetunes
neural networks on data with non-stationary distribution. Common solutions include retrain-
ing the residual policy at the end of DAgger using all available correction data collected from
all the intermediate residual policies [41]. Another way is to rely on the base policy training
data as a normalizer [17]. In this work, we empirically found that larger batch sizes can ef-
fectively stabilize residual training. With batch size = 50, the book flipping task reach 100%
with one batch, while the belt assembly task performs better with two batches. We compare
our method with a smaller batch size on the book flipping task, where we warm up the residual
with 20 episodes of initial correction data, then update every ten more episodes for three times.

Training Frequency Training Sample
100

Finding: Large-batch DAgger is more suitable
for training Compliant Residual Policy. The
small-batch training becomes unstable and the
demonstrator needs to provide large magnitudes
of corrections as the number of iterations in- o
creases. During evaluation, the final policy al- peich e perchseTs0 - niem
ways fails by inserting too high, while our single- Figure 7: Effect of Training Frequency and Sample.
batch policy achieves a 100% success rate with ~ Batch size=50 leads to more stable training and dense

the same amount of data and training epochs. sampling after correction starts achieves better perfor-
mance on the book flipping task.

Success Rate (%)
Success Rate (%)

Dense Around Dense After

Sampling strategy during training. The start

of a human intervention contains critical infor-

mation of the timing and direction of correction. Accurate delta action predictions right after
correction starts are important for reactive corrective behaviors. We investigate three strategies for
sampling from online correction data during training: 1. Uniform sample, where the whole episode is
sampled uniformly. 2. Denser sample around the start of a human intervention, and 3. denser sample
only after the human intervention starts. For 2 and 3, we uniformly increase the sample frequency
four times for a fixed period before and/or after intervention starts.

Finding: Sampling denser right after intervention starts leads to more reactive and accurate cor-
rections. As shown in Fig. 7 (right), the best performance comes from densely sampling after the
beginning of interventions. Sampling denser around the start of a human intervention also adds more
samples right before the intervention starts, which is where humans observe signs of failures. These
are mostly negative data, and using them for training decreases the policy success rate.

5 Conclusion and Discussion

In this work, we evaluate practical design choices for DAgger in real-world robot learning, and provide
a system, CR-DAgger, to effectively collect human correction data with a Compliant Intervention
Interface and improve the base policy with a Compliant Residual Policy. We demonstrate the
effectiveness of our designs by comparing them with a variety of alternatives on four contact-rich
manipulation tasks.

Limitations and Future Work.

The base policy should have a reasonable success rate for the residual policy to learn effectively. From
our experiments, we recommend starting to collect correction data for the residual policy when the
base policy has at least 10% ~ 20% success rate. A future direction is to derive theoretical guidelines
for the trade-off between the base and residual improvements.

Throughout this work, we use a MLP as the action head of our Compliant Residual Policy and directly
regress the actions. Although it works well in our tasks, it may experience difficulty for tasks that
involve more distinctive action multi-modalities. More expressive policy formulations, such as Flow
Matching [28, 6] might be useful for these tasks.

Our data collection system is based on kinesthetic teaching. Although it provides richer data with
higher quality than teleoperation as explained in the paper, it may require more labor during training
data collection since the demonstrator needs to grasp the handle on the robot.
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A Technical Appendices and Supplementary Material

A.1 Control Implementation Details
A.1.1 Compliance Control

Compliance is a motor property that describes how motion responds to force. For example, a balloon
has high compliance, meaning that they deform significantly under external forces. Industrial robots
typically have very low compliance, meaning that their motion tracking has little deviation under
external forces.

Compliance control refers to the technique that makes a rigid robot behave softly using feedback
control. It is a standard technique widely adopted in the manufacturing industry. It lets robots interact
with the environment safely without creating huge forces. With compliance, the robot retreats when
it experiences external forces, larger force leads to bigger position deviations. When there is no
external force, compliance control tracks the target position accurately just like position-based control.
Compliance control allows specification of the exact desired compliance profile, typically described
by parameters such as stiffness, damping and inertia.

Impedance control and admittance control are two methods to implement compliance control. The
users are free to choose the controller that works with their robot. Robots with good position control
accuracy (e.g., most industrial robots) can use admittance control. Robots with low gear ratio (e.g.
"quasi-direct-drive" robots) can use impedance control. We use admittance control in this work and
open-sourced our implementation at https://github.com/yifan-hou/force control.
A good reference for different compliance control schemes is the “Force Control” chapter of the
Handbook of Robotics [40].

A.1.2 Control Architecture

Our software system consists of three independent loops:

1. The base policy loop that runs the diffusion policy. The base policy loop updates at about
1Hz, each time predicts 32 frames of actions corresponding to 3.2s of future robot positions.
In this work we have not optimized the implementation for computation speed.

2. The residual policy loop that runs at approximately S0Hz, each time predicts five frames
of delta actions corresponding to 0.1s of delta positions. The delta actions are added to
the corresponding base policy actions based one time, before being sent to the low-level
compliance controller for execution. The loop rate is limited by our current implementation
and can be improved if needed.

3. The admittance controller loop that runs at exactly 500Hz. This loop implements 6D
Cartesian compliance on the robot. It takes reference positions and forces from the residual
policy. When there is zero reference force and no external force, the admittance controller
lets the robot track the reference position precisely. When external force exists, the robot
will deviate from the reference position like a spring centered on the base policy output
position.

Apart from the above controller/policy loops, each hardware (e.g. camera, force-torque sensor) has a

standalone driver loop maintaining 1. communication with the hardware, and 2. buffers for action
and feedback for this hardware.

A.2 Stage-Wise Success Rate

We report the success rate of the book flipping task into three key stages.

A.3 Correction Data Decomposition

As mentioned in the “Training strategy” part of § 3.2, we used two strategies to ensure the residual
policy behaves stably around low correction data regions. The first strategy is to include the no
correction portion of online data for training and label them with zero residual actions. The second
strategy is to collect a few trajectories (15 out of the 50 total correction episodes) in which the
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Figure 8: Stage-wise Success rates. Each row represents the results for one task, while each column shows the
success rate up to the corresponding stage.

demonstrator marks the whole trajectory as correction, even when the correction is small or zero. In
practice, we find that the first strategy works better when the base policy is more stable and has a
higher success rate, while the second strategy works better otherwise. In our experiments, we use the
first strategy for the book flipping task and use the second strategy for the belt assembly task.

A.4 Experiments Compute Resources

We use a desktop with a NVIDIA GeForce RTX 4090 GPU for training and deployment.

A.5 Hardware Design

Our kinesthetic correction hardware setup features a tool interface that allows task-specific tool
swapping. For the book flipping task, we designed a customized fork-shaped tool that can easily
insert under the books and flip them. For the belt assembly task, we used a standard WSG-50 gripper
and fin-ray fingers [9]. An interesting future direction is to leverage generative models for automatic
manipulator design [47]. Future work can also incorporate other types of force or tactile sensors,
such as capacitive F/T sensors [10] and vision-based tactile sensors [50, 30, 4].

A.6 Broader Impact

CR-DAgger contributes to the field of robotics by improving pretrained real-world manipulation
policies with a small amount of human correction data. The proposed Compliant Intervention
Interface provides an intuitive and safe way for humans to directly interact with robots and correct the
robot policy on the spot. We demonstrate significant policy improvements on two real-world contact-
rich manipulation tasks, book flipping and belt assembly, which can lead to useful applications in
industry and households.
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