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Abstract

We address key challenges in Dataset Aggregation (DAgger) for real-world contact-rich manipulation: how to collect
informative human correction data and how to effectively update policies with this new data. We introduce Compliant
Residual DAgger (CR-DAgger), which contains two novel components: 1) a Compliant Intervention Interface that
leverages compliance control, allowing humans to provide gentle, accurate delta action corrections without interrupting
the ongoing robot policy execution; and 2) a Compliant Residual Policy formulation that learns from human corrections
while incorporating force feedback and force control. Our system significantly enhances performance on precise
contact-rich manipulation tasks using minimal correction data, improving base policy success rates by 64% on
four challenging tasks (book flipping, belt assembly, cable routing, and gear insertion) while outperforming both
retraining-from-scratch and finetuning approaches. Through extensive real-world experiments, we provide practical
guidance for implementing effective DAgger in real-world robot learning tasks. Result videos are available at:

https://compliant—-residual-dagger.github.io/

Keywords

DAgger, Imitation Learning, Manipulation, Compliance Control

1 Introduction

Learning from human demonstrations has seen many recent
successes in real-world robotic tasks Chi et al. (2024); Hou
et al. (2025); Wu et al. (2025); Xu et al. (2025); Xiong
et al. (2025). However, to obtain a successful policy, human
demonstrators often have to repeatedly deploy a policy and
observe its failure cases, then collect more data to update the
policy until it succeeds. This process is broadly referred to
as Dataset Aggregation (DAgger) in Ross et al. (2011); Kelly
et al. (2019). However, doing DAgger effectively for real-
world robotic problems still faces the following challenges:

How to collect informative human correction data? Ross
et al. (2011) shows that DAgger is most effective when the
correction data is within the original policy’s induced state-
action distribution. In practice, the common approach is either
(1) collecting offline demonstrations that cover the policy’s
typical failure scenarios Chi et al. (2023), or (2) human taking
over robot control during policy deployment Spencer et al.
(2020); Mandlekar et al. (2020). However, in both cases, the
human demonstrator has no access to the original policy’s
behavior and may deviate excessively from it. Human taking
over additionally introduces force discontinuity when they do
not instantly reproduce the exact same robot force. This is
partially due to the lack of effective correction interfaces that
support precise and instantaneous intervention.

How to effectively update the policy with new data?
Prior methods for improving a pretrained policy with
additional data include (1) retraining the policy from scratch
with the aggregated dataset Kelly et al. (2019), which can
be computationally expensive; (2) finetuning the policy with
only the additional data Wu et al. (2025); He et al. (2025);
Chen et al. (2025), which is sensitive to the quality of the
new data Yuan et al. (2024), and (3) training a residual policy
separately on top of the pretrained policy, which is typically

done with Reinforcement Learning Ankile et al. (2024); Yuan
et al. (2024) or Imitation Learning Bharadhwaj et al. (2024),
both require a large number of samples.

In this work, we address these questions by proposing
an improved system Compliant Residual DAgger (CR-
DAgger) consisting of two critical components:

* Compliant Intervention Interface. We propose an on-
policy correction system based on kinesthetic teaching
to collect delta action without interrupting the current
robot policy. Leveraging compliance control, the interface
lets humans directly apply force to the robot and feel
the magnitude of their instantaneous correction. Unlike
take-over corrections, our design allows smooth transition
between correction/no correction mode, while providing
direct control of correction magnitudes.

Compliant Residual Policy. Leveraging the force
feedback from our Compliant Intervention Interface, we
propose a residual policy formulation that takes in an
extra force modality and predicts both residual motions
and rarget forces, which can fully describe the human
correction behavior. The Compliant Residual Policy is
force-aware, even when the base policy is position-only.
We show that our residual policy formulation learns
effective correction strategies using the data collected from
our Compliant Intervention Interface.

Together, our system significantly improves the success rate
of precise contact-rich robot manipulation tasks using a small
amount of additional data. We demonstrate the efficacy of our
method on four challenging tasks involving long horizons
and sequences of contacts: book flipping, belt assembly,
cable routing, and gear insertion. We improve over the base
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Figure 1. CR-DAgger. To improve a robot manipulation policy, we propose a compliant intervention interface (a) for collecting human
correction data, and use this data to update a compliant residual policy (b), and thoroughly study their effects by deploying the
updated policy on two contact-rich manipulation tasks in the real world (c).

policy success rate by 64%, while also outperforming retrain-
from-scratch and finetuning under the same data budgets. In
summary, our contributions are:

* A Compliant Intervention Interface, a system that allows
humans to provide accurate, gentle, and smooth corrections
in both position and force to a running robot policy without
interrupting it.

¢ A Compliant Residual Policy, a policy formulation that
seamlessly integrates additional force modality inputs and
predicts residual motions and forces.

A practical guide for efficient DAgger based on extensive
real-world studies for critical but often overlooked design
choices, such as batch size and sampling strategy. Our
hardware design, training data, and policy code can be
found here.

This work is an extended version of the conference
paper Xu* et al. (2025). We expand the content of this paper
in the following ways:

* Enrich the experimental results with two additional contact-
rich tasks as detailed in Sec. 4: a peg-in-hole style gear
insertion task, which requires sub millimeter accuracy and
tests our system for small-magnitude correction motions;
and a cable routing task, which contains large variations in
item physical properties (cable stiffness).

* Identify and explain the intention-misinterpretation
phenomenon in correction data collection in Sec. 3.1,
caused by robot tracking errors. We provide a solution
to the problem by reducing tracking error both spatially
and temporally and include additional analysis on the effect
of tracking error in Sec. 4.5.

* Analyze the quality improvement of human correction
data from our proposed system comparing with traditional
manipulation data collection method in Sec. 4.4.

2 Related Work

Human-in-the-Loop Corrections for Robot Policy Learn-
ing. The original DAgger work Ross et al. (2011) requires

the demonstrator to directly label actions generated by the
policy. In robotics, a practical variation is to let the human
take over the robot control and provide correct action directly
Kelly et al. (2019). Such human correction motion can be
recorded with spacemouse Chen et al. (2025); Liu et al.
(2022), joystick Spencer et al. (2020), smartphone Mandlekar
et al. (2020), or arm-based teleoperation system Hoque et al.
(2021a,b); Wu et al. (2025). We instead proposes a novel
kinesthetic teaching system with compliance controller that
allows the demonstrator to apply delta corrections while the
robot policy is still running, and additionally records force
feedback. Our results show that both the delta correction data
and the force data are crucial to the success of the learned
policy.

Improving Pretrained Robot Policies with New Data.
The most direct approach to improving a pretrained policy
with new correction data is to retrain the policy on the
aggregated dataset, combining prior demonstrations with
new feedback Mandlekar et al. (2020); Spencer et al.
(2020). Alternatively, Reinforcement Learning (RL) offers a
framework to incorporate both offline and online data, either
by warm-starting replay buffers Luo et al. (2024); Ball et al.
(2023) or by using offline data to guide online fine-tuning Yin
et al. (2025); Xu et al. (2022). When policies are trained
on large-scale human demonstration datasets Black et al.
(2024); Team et al. (2024); Kim et al. (2024); O’Neill et al.
(2024); Khazatsky et al. (2024); Xu et al. (2023a, 2024a),
retraining becomes impractical, especially when the original
data is inaccessible. In such cases, fine-tuning with only
the new data is a common solution, using either imitation
learning Liu et al. (2022); He et al. (2025); Wu et al. (2025)
or RL Mark et al. (2024); Chen et al. (2025). Another line of
work introduces an additional residual model on top of the
original policy. These residual policies can be trained with
RL in simulation Yuan et al. (2024); Ankile et al. (2024);
Haldar et al. (2023a), but suffers from sim-to-real challenges.
Training residual policy in the real world usually requires a
large number of samples Bharadhwaj et al. (2024); Johannink
et al. (2019), intermediate scene representation Guzey et al.
(2024Db), or consistent visual observations between training
and testing Guzey et al. (2024a); Haldar et al. (2023b), making
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the approach hard to adopt in practice. In this work, we
introduce a practical data collection system and an efficient
residual policy learning algorithm for long-horizon, contact-
rich manipulation tasks. Our approach requires only a small
amount of real-world correction data and supports integration
of additional sensory modalities not present in the original
model, leading to improved policy performance.

Compliance and Compliance Control. Compliance is
a motor property that describes how motion responds to
force. For example, traditional industrial robots typically have
position control with very low compliance to achieve precise
tracking under heavy load. On the contrary, high compliance
lets a robot retreat when it experiences external forces. A high
compliance or a variable compliance profile Mason (2007)
may be preferred for tasks involving interactions with the
environment, since they can increase execution robustness or
avoid huge contact forces during the interactions Hou and
Mason (2019); Hou et al. (2020).

Compliance control refers to feedback control techniques
that give a robot high compliance or spatial-temporally
varying compliance profiles. Compliance control can be
implemented by Impedance Control Hogan (1984) if the robot
is back-drivable, or by Admittance Control with external
force sensors if the robot cannot be back-driven, such as
most industrial robots. A more through review of compliance
controller implementations can be found in Lynch and Park
(2017) and Villani and De Schutter (2016).

3 CR-DAgger Method

Our goal is to improve a pretrained robot policy with a small
amount of human correction data. To achieve this, we propose
a Compliant Intervention Interface (§ 3.1) that enables precise
and intuitive on-policy human correction data collection, and
a Compliant Residual Policy (§ 3.2) that efficiently learns the
correction behaviors to be used on top of the pretrained policy.
Throughout the paper, we use the term base policy to refer to
the pretrained policy without online improvements.

3.1 Compliant Intervention Interface

Correction data is collected by human demonstrators to rectify
policy failures. Unlike initial demonstrations that establish
baseline behaviors, correction data specifically targets failure
modes observed during policy deployment. Correction data
is most effective when it corrects failures in policy-induced
state distributions Ross et al. (2011). The interface through
which these corrections are collected significantly impacts
the quality of correction data, which should be intuitive
for demonstrators, capture critical corrective information at
precise moments of failures, and facilitates collecting data
close to the base policy state-action distribution.

There are two types of correction collection methods:
Off-policy correction is when humans observe failures of
the base policy during deployment, and then recollect extra
offline demonstrations to address failure cases. This approach
is most commonly used for improving Behavior Cloning
policy performance due to its simplicity - it requires no
additional infrastructure beyond the original data collection
setup. However, the resulting demonstrations may fail to cover
all the failure cases or deviate from the original state-action
distribution. We focus on on-policy correction instead, where

humans can monitor policy execution and intervene on the
spot when failures occur or are anticipated. This approach
allows humans to provide corrections more targeted to the
base policy’s failure cases. However, challenges still exist for
an intervention system:

* Non-smooth transitions. Intervention in robotics is
typically implemented by take-over correction: letting
human take complete control and overwrite robot policy.
As the underlying control abruptly switches between robot
policy and human intention, disturbances are introduced
due to policy inference and human response latency,
especially when the robot is withholding external forces.
The recorded data thus may include undesired actions that
do not reflect the human’s intention.

¢ Distribution shift. The human-intervened state-action
distribution may deviate significantly from the original
distribution. Additionally, the non-smooth transition above
could bring in disturbances and add to the distribution shift.

e Indirect correction brings errors. Correction is
commonly implemented via teleoperation interfaces such
as spacemouse or joysticks He et al. (2025); Chen et al.
(2025). With spatial mismatch and teleoperation latency, it
is hard for the demonstrator to instantly provide accurate
corrections upon intervention starts without going through
a short adjustment period.

¢ Missing information. The recorded correction data need
to fully describe the human’s intended action. Simply
recording the robot’s position is not sufficient, since it may
be under the influence of human correction force and will
cause different result when testing without human.

We propose a Compliant Intervention Interface with the
following designs to solve those challenges:

* Delta correction instead of take-over correction. Unlike
take-over correction, where the demonstrator has no idea
of the policy’s original intention once taking over, we
propose a novel on-policy delta correction method: we let
the robot policy executes continuously while the human
applies forces to the robot with a handle mounted on the end
effector, resulting in delta actions on top of the policy action.
The human demonstrator can always sense the policy’s
intention through haptic feedback, and easily control the
magnitude of intervention by the amount of force applied to
the handle. As a result, delta correction ensures smooth
intervention data and limits the human from providing
very large corrections. The approach is also intuitive as
the human can directly move the robot towards desired
correction directions.

* Correction interface with compliance control. In order to
apply delta correction over a running policy, we provide a
compliant interface that allows humans to safely intervene
and apply force to the robot to affect its behaviors at any
time, as shown in Fig. 2. We design a kinesthetic correction
hardware setup with a detachable handle for human to
hold when correcting, and allows easy tool-swapping for
different tasks. We run a compliance controller (specifically
admittance control) in the background to respond to both
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Figure 2. Compliant Intervention Interface characterized by a kinesthetic correction hardware setup where humans hold on the
handle and apply forces to correct robot execution, providing on-policy delta corrections.
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recorded correction motion direction is very different. (A)
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contact forces and human correction forces, allowing the
human to influence but not completely override the policy
execution. The admittance controller forms a virtual spring-
mass-damper system around the base policy output g, s:

(D

where M,K and D denotes the virtual inertia, stiffness
and damping of the compliant system, F' represents the
combined force feedback from both external contacts and
human correction. The admittance controller uses a constant
stiffness ~1000 N/m to allow easy human intervention and
ensure accurate tracking.

MG=K(qref —q) —Dg+F,

¢ Correction recording with buttons and force sensor.
Our interface additionally includes an ATI 6-D force
sensor to directly measure contact forces, and a single-key
keyboard placed on the handle to record the exact timings of
correction starts/ends. Both the policy’s original commands
and the human’s delta corrections are recorded, along with
force sensor readings during the interaction.

Additionally, comparing with the conference version of
this paper Xu* et al. (2025), we identified and fixed an issue
of intention misinterpretation: When the human correction
motion is smaller than the robot tracking error, the human
intention can be misinterpreted and the residual policy would

learn the wrong correction motion. This is illustrated in Fig. 3.
With our Compliant Intervention Interface, human correction
motion is computed as the difference between robot position
feedback and the base policy output. A subtle assumption
here is that the robot position before intervention accurately
reflects the base policy behavior, i.e. the tracking error should
be negligible. When the tracking error is larger than the delta
corrective motion from human intervention, the computed
correction motion could be in the opposite direction of the
human’s true intended correction direction. To avoid intention
misinterpretation even when human correction is small, we
implement two features on top of Xu* et al. (2025) to reduce
the tracking error: 1) we add a velocity tracking term in the
compliance control law in addition to the position tracking
term used in 1:

MG =K (qrer — ) +D(Grey —4) + F, @

where the velocity reference g,y is computed via finite
difference from the position reference g,.r. This reduces the
tracking error spatially. 2) We added a look-ahead time to
robot feedback when computing the correction motion ¢ ,jzq:

3

where At is empirically set by the estimation of hardware
latency. The look-ahead time reduces the tracking error
temporally. Together, the largest tracking error reduces from
30mm to below 5mm during fastest robot motion in our
experiments.

delralt] = qlt] — qref[t —At],

3.2 Compliant Residual Policy

Given the correction data, there are multiple ways to update
the policy. Common practices include retraining the base
policy from scratch with both initial data and correction
data, and finetuning the base policy with only the correction
data. However, retraining is costly as it requires updating
the entire base policy network from scratch with all the
available data. It also requires access to the base policy’s
initial training data, which might not be accessible for many
open source pretrained models. The amount of correction
data is significantly smaller than the initial training data,
thus simply mixing them together makes the policy hard to
gain effective corrective behaviors. While finetuning allows
updating partial policy network parameters with new data
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forces A{ are taken by an admittance controller to command the robot.

only, its training stability can be easily affected by the
distribution mismatch between the correction data and initial
training data. Moreover, both retraining and finetuning can
only update the policy with its fixed network architecture
while being unable to incorporate new inputs and outputs.
We propose a compliant residual policy trained only on the
correction data to refine base policy’s position actions and
predict additional force actions.

Compliant residual policy formulation. Our policy
directly learns corrective behavior from the human delta
correction data, as shown in Fig. 4. It takes as input the
same visual and proprioceptive feedback as the base policy
but with a shorter horizon. It also takes in an extra force
modality, which is available using our Compliant Intervention
Interface. The policy outputs five frames of actions at a time,
corresponding to 0.1s of execution time when running at
50Hz. The action space is 15-dimensional: the first nine
dimensions represent the SE3 delta pose from the base policy
action to the robot pose command Chi et al. (2023), while the
later six dimensions represent the expected wrench (force and
torque) the robot should feel from external contacts. Both the
robot pose command and the expected wrench are sent to a
standard admittance controller for execution with compliance.

The residual policy directly uses the base policy’s frozen
image encoder Radford et al. (2021); Amir et al. (2021);
Xu et al. (2023b) to extract an image embedding, a temporal
convolution network Van Den Oord et al. (2016) to encode the
force vectors, followed by fully-connected layers to decode
actions.

Advantages. This formulation provides the following
advantages:

o Sample-efficient learning. The residual policy’s network is
light-weight (~2MB trainable weights) and only requires
a small amount of correction data to train (50~100
demonstrations).

* Incorporating new sensor modality. Compared to retrain-
ing and finetuning methods that are limited to the base
policy’s network architecture, residual policy can incorpo-
rate new sensor modality. This allows taking any position-
based pretrained policy and turning it force-aware simply

by collecting a small amount of correction data with force
modality.

* High-frequency inference. The light-weight residual policy
runs at a higher frequency than the base policy,
incorporating high-frequency force feedback and enabling
reactive corrective behaviors. This reactivity is particular
important for error correction during contact events.

Training strategy. In prior work, a residual policy is
trained either in simulation with RL Ankile et al. (2024);
Yuan et al. (2024) to give it sufficient coverage of the state
distribution, or in the real world with pre-collected behavior
cloning data Luo et al. (2024). In this work, we train the
Compliant Residual Policy completely on the small amount of
new real-world correction data with the following strategies:

» Ensure sufficient coverage of in-distribution data. Human
correction tends to be frequent around a few key moments
of the task. A residual trained on correction data alone
can extrapolate badly around states where no correction is
provided. To help the residual policy understand when not
to provide corrections, we: (1) include the no correction data
for training but label it as zero residual actions; (2) collect
a few trajectories where the demonstrator always holds the
handle and marks the whole trajectory as correction even
when the correction is small or zero. Details are in § A.3.

e Prioritize correction data over no-correction (zero residual
action) data. Similar to Liu et al. (2022), we alter the
data sample frequency during training based on whether
they have human correction or not. Specifically, since the
moment of correction start indicates where the current
policy performs badly followed by immediate action
to fix it, we sample data more frequently for a short
period immediately after correction starts. Our real-world
ablations (§ 4.5) demonstrate that our training strategies
improve the quality of the residual policy and the overall
success rate.

4 Evaluation

For each task, we train a diffusion policy Chi et al. (2023)
with 150~400 demonstrations as the base policy. We first
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deploy the base policy and observe its performance and failure
modes. Next, from the same base policy, we collect 50~100
correction episodes with each data collection method. Then,
we update the policy using each network updating method and
training procedure. Finally, we deploy the updated policies
and evaluate their performance under the same test cases.
Details of tasks and comparisons are described below.

4.1 Contact-Rich Manipulation Tasks

Book Flipping: As shown in Fig. 5 (a), this task is to flip up
books on a shelf. Starting with one or more books lying flat
on the shelf, the robot first insert fingers below the book, then
rotate the book up and push them firmly against the shelf to
let them stand on their own. The base policy is trained with
150 demonstrations.

This task is challenging as it involves rich use of physical
contacts and forceful strategies Hou et al. (2020). A position-
only strategy always fails immediately by triggering large
forces, so we execute all policies through the same admittance
controller. The task success requires high precision in both
motion and force to accurately align the fingers with the gap
upon insertion, and to provide enough force to rotate heavy
books and make the books stand firmly.

Each evaluation includes 20 rollouts on 4 test cases (5
rollouts each), as shown in Fig. 5 (b): 1) flipping a single
book (three seen and two unseen books), initially far from the
shelf edge; 2) flipping a single book close to the shelf edge;
3) flipping two books together (combinations of three seen
and three unseen books), initially far from the shelf edge; 4)
flipping two books close to the shelf edge. We use the same
initial configurations for all evaluations.

Belt Assembly: As shown in Fig. 6 (a), this task is to
assemble a thin belt onto two pulleys, which is part of the
NIST board assembly challenge Kimble et al. (2020). Starting
with the belt grasped by the gripper, the robot needs to first
thread the belt over the small pulley, next move down while
stretching the belt to thread its other side on the big pulley,
then rotate 180° around the big pulley to tighten the belt, and
finally pull up to release the belt from the gripper. The base
policy is trained with 405 demonstrations.

The task is challenging as it requires both position and
force accuracy throughout the process. Specifically, the belt
is thin and soft so the initial alignments onto the pulleys are
visually ambiguous. Also, since the belt is not stretchable,
there is more resistance force and less position tolerance as
the belt approaches the second pulley, requiring a policy with
good force-position coordination and adaptation. We ran 32
rollouts across four different initial board positions and four
grasp locations (Fig. 6 (b)).

Cable Routing The task includes routing a USB cable
around three clips, as shown in Fig. 7 (a). The USB cable has
one fixed end and a free end. The cable starts being grasped,
and can slide easily through a groove on the finger as the hand
moves. The base policy is trained with 200 demonstrations.

We make this task challenging by using cables with
different appearances and stiffness than those seen by the
base policy. A change in cable position or physical property
can easily cause the cable to be too high and miss a clip
(Fig. 8 (b)), or too low and get stuck by a clip. We additionally
introduce difficulty by using clips that are visually different
from the one used in base policy training, testing our system’s

generalization capability. We ran 20 rollouts across five cables
and four different fixed end locations.

Gear Insertion The task involves inserting a plastic gear
onto a metal axis while mating it to a nearby gear, which is
also a part of the NIST board assembly challenge Kimble et al.
(2020). The base policy is trained with 150 demonstrations.

The task is challenging due to the tiny tolerance between
the gear and the axis. It is also different than the previous tasks
as the human correction motions often have small magnitudes.
We introduce additional difficulties by elevating the base
board by 3 cm. We ran 20 rollouts across five different base
locations.

4.2 Base Policy and its Failure Modes

We trained a diffusion policy Chi et al. (2023) that takes
in past images from a wrist-mounted camera and robot
proprioception observations, and predicts a future position-
based action trajectory. To isolate the contribution of force
inputs versus human corrections, we trained diffusion policies
with and without force inputs as baselines for the belt
assembly task.

The book flipping base policy achieves a 40% success rate
with the following common failure cases (Fig. 5 (¢)): (1)
Missed insertion. The fingers initially go too high above the
book or aims for the gap between the two books, failing to
properly insert beneath the books. (2) Incomplete flipping. At
the last stage, the policy retracts the blade before the book
can stand stably, causing it to fall back.

The belt assembly base policy achieves a 15.6% success
rate. Adding force input increases the base policy success
rate to 43.8%. Common failure cases include (Fig. 6 (¢)): (1)
Missed slotting: the fingertip goes too high or too low, causing
the belt to miss the slot on the big pulley. (2) Belt slippage:
the fingers pull the belt in the wrong direction, causing the
belt to tilt and slip off the pulley.

4.3 Baselines

We compare CR-DAgger with baselines across two
dimensions: correction method and policy update method.
We present the quantitative results in Fig. 9, and explain key
findings in § 4.4.

Correction data collection methods. We compare
our Compliant Intervention Interface with the two most
commonly used correction data collection strategies:

* Observe-then-Collect includes two steps: first, the policy
is deployed and human demonstrators observe the initial
settings that could cause failures; then, demonstrators
provide completely new demonstrations starting from
similar initial settings. As explained in § 3.1, this type
of offline correction potentially misses critical timing
information, and the resulting demonstrations may deviate
from the policy’s original behavior distribution.

* Take-over-Correction (HG-DAgger) Kelly et al. (2019)
is another common correction strategy where human
demonstrators monitor policy execution and take complete
control when failures are anticipated. We implement Take-
over-Correction on our Compliant Intervention Interface by
cleaning up command buffer to the compliance controller
and switching stiffness to zero upon correction starts, so the
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Figure 5. Book Flipping Task. (a) Policy rollout of [Compliant Residual] policy trained with [On-Policy Delta] data, demonstrating
accurate insertion motions and forceful pushing strategy. (b) Different test scenarios. (c) Typical failure cases of the base policy:
inserting too high above the book and missing the gap; retracting the fingers before the books can steadily stand.
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Figure 6. Belt Assembly Task. (a) Policy rollout of [Compliant Residual] policy trained with [On-Policy Delta] data, demonstrating
accurate force-position coordination and adaptation. (b) Different test scenarios. (c) Typical failure cases of the base policy: missing
the slot by going too high above the pulley; tilting the belt and causing it to slip off the pulley.
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Figure 7. Cable Routing Task. (a) Policy rollout of [Compliant Residual] policy trained with [On-Policy Delta] data. (b) Typical failure
case of the base policy: missing a clip.

robot policy does not affect the robot during correction. Policy update methods. We compare with two common
However, as explained in § 3.1, take-over correction policy update methods:
introduces an abrupt transition around control authority e Retrain Policy: Retrain the base policy using both the
switching, which may cause distributional discontinuities  original training data and the correction data from scratch.
in the training data. As explained in § 3.2, this approach is reliable but may
require access to the orignal data and large amount of new
e On-Policy Delta (Ours): the details are described in § 3.1. data to work well.
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Figure 8. Gear Insertion Task. (a) Policy rollout of [Compliant Residual] policy trained with [On-Policy Delta] data. (b) Typical failure
case of the base policy: misaligning the gear with the axis and failing to mate with the nearby gear.

e Finetune Policy: Finetune the base policy using only the
correction data (freezing visual encoders). As explained in
§ 3.2, this approach can be sensitive to data quality and
distribution shifts.

e Fintune Policy with KL Regularization: A recent
method Fan et al. (2023) that stabilizes finetuning
training by encouraging the predicted action to be close to
the training data distribution.

* Residual Policy: an ablation of our method where force is
removed from both input and outputs.

* Compliant Residual Policy (Ours): Residual policy update
with additional force input and outputs, see details in § 3.2.

4.4 Key Findings from Comparisons

Finding 1: Compliant Residual Policy is able to improve
base policy by a large margin. As shown in Fig. 9,
[Compliant Residual] policy trained with [On-Policy Delta]
data improves the base policy success rate by 60% and
50% on the two tasks respectively. It effectively learns

useful corrective strategies from the limited demonstrations.

For example, in the book flipping task, the policy learns to
pitch the fingers down more before finger insertion to increase
the insertion success; in the belt assembly task, the policy
learns to correct the height of the belt when misaligned to
the pulley slot. Results are best viewed in our supplementary
video.

Finding 2: Residual policy allows additional useful
modality to be added during correction. [Compliant
Residual] policy performs significantly better than other
methods without force (45% higher success rate than the best
position-only baseline on the book task and 53% higher on the
belt task) as it can both take in force feedback that indicates
critical task information and predict adequate contact forces
to apply. For example, the last stage of the book flipping task
requires the robot to firmly push the book against the shelf
wall to let it stand on its own. [Compliant Residual] policy
predicts large pushing forces at this stage to make the books
stand stably with a 100% success rate, while [Residual]’s
success rate drops from 70% to 35% (§ A.2). The second
stage of the belt assembly task (threading the belt on the
large pulley) requires delicate belt height adjustments under
ambiguous visual information due to occlusions and the lack
of depth. [Compliant Residual] policy learns to move along

the pulley to find the slot when the finger touches the top of
the pulley.

Finding 3: Smooth On-Policy Delta data enables stable
residual policy. [Compliant Residual] policy has 45% higher
success rate when trained on [On-Policy Delta] data instead
of [Take-over-Correction] data on the book flipping task.
Residual policy trained with [Take-over-Correction] data
sometimes exhibits large noisy motions that trigger task
failures, such as retracting the fingers too early in the book
flipping task. On the contrary, the residual policy trained
with [On-policy Delta] data has much smoother action
trajectories and better reflects human’s correction intentions,
providing suitable magnitudes of corrections. To see the
improvements more clearly, we plot robot velocity data
around correction starts and ends from 100 episodes of data
collections in Fig. 10. [Take-over-Correction] data contains
larger robot velocity magnitude right after control authority
switches, especially when robot takes over control from
human. Moreover, the demonstrator can directly perceive the
base policy’s intention and the extent of correction being
applied through the resistance force when employing the
[On-Policy Delta] kinesthetic teaching style correction, thus
preventing correction demonstrations from deviating too
much from the base policy’s state-action distribution. Fig. 11
shows that [On-Policy Delta] introduces less distribution shift
compared to [Take-over-Correction].

Finding 4: Retraining base policy is stable but learns
correction behavior slowly. Retraining from scratch with
the initial and correction data together leads to policies with
stable motions. However, its behavior is less affected by the
small amount of correction data compared to the dominant
portion of initial data, leading to insignificant improvements
over the base policy (1.67% success rate drop on the book
task averaged across all data collection methods, 18.8%
success rate improve on the belt task, both are much less
improvements than [Compliant Residual]).

Finding 5: Finetuning base policy is unstable. Policy
finetuning with either correction data has the worst
performance across all policy update methods and even
underperforms the base policy (30% success rate drop on the
book task averaged across all data collection methods, 15.6%
drop on the belt task). The finetuned policy predicts unstable
and noisy motions, quickly leading to out-of-distribution
states, such as inserting too high in the book flipping task
and drifting away from the board in the belt assembly task.
This is likely due to the distribution mismatch between the
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Figure 9. Results. We compare CR-DAgger across two dimensions: correction method and policy update method. The result shows
that our [Compliant Residual (CR)] policy trained with [On-Policy Delta] data is able to improve upon base policies on both tasks and

outperforms other variations.
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Figure 10. [On-Policy Delta] enables smoother trajectories.
Here compares velocity magnitude within 1.5 s of the corrections
starts/ends. [On-Policy Delta] velocity magnitudes are smaller
and more consistent, [Take-Over Correction] has notably larger
magnitude and variations, demonstrating that [On-Policy Delta]
encourages smoother trajectories.

base policy training data and correction data, causing training
instabilities. Adding KL-regularization effectively reduced
the noisy behavior, however, the overall success rate is still
lower than other baselines.

4.5 Ablations

We study the effect of important design decisions in our
method with ablation studies.
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Figure 11. [On-Policy Delta] introduces less distribution
shift. Here we compare the distribution of fingertip trajectories
among 1) base policy training data, 2) correction episodes from
[On-Policy Delta)], and 3) correction episodes from
[Take-Over-Correction]. For intuitive visualization, all trajectories
are stretched to the same duration and normalized to (0,1). The
range of the vertical axis is 0.55m for all three axes. [On-Policy
Delta] data’s distribution is better aligned with base policy training
data’s distribution than [Take-Over-Correction] data.

Training frequency and batch size. One important
parameter in DAgger is the batch size between policy updates.
With a smaller batch size, the policy is updated more
frequently, then new correction data can better reflect the
most recent policy behavior. However, DAgger with small
batch sizes is known to suffer from catastrophic forgetting
Kirkpatrick et al. (2017); Goodfellow et al. (2013) since
it finetunes neural networks on data with non-stationary
distribution. Common solutions include retraining the residual
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Figure 13. Multi-Batch Update Result. The compliant residual
policy trained on two batches of correction data achieves the best
result on the belt assembly task, indicating that more batches of
correction data do not guarantee better performance.

policy at the end of DAgger using all available correction data
collected from all the intermediate residual policies Wu et al.
(2025). Another way is to rely on the base policy training data
as a normalizer He et al. (2025). In this work, we empirically
found that larger batch sizes can effectively stabilize residual
training. With batch size = 50, the book flipping task reach
100% with one batch, while the belt assembly task performs
better with two batches. We compare our method with a
smaller batch size on the book flipping task, where we warm
up the residual with 20 episodes of initial correction data,
then update every ten more episodes for three times. We also
experiment with multiple batches on the belt assembly task to
validate if the improvement is monotonic.

Finding: Large-batch DAgger is more suitable for training
Compliant Residual Policy. The small-batch training becomes
unstable and the demonstrator needs to provide large
magnitudes of corrections as the number of iterations
increases. During evaluation, the final policy always fails
by inserting too high, while our single-batch policy achieves a
100% success rate with the same amount of data and training
epochs.

Finding: More batches does not always bring better
performance. Fig. 13 shows the change of success rate on
the belt assembly task as the number of batches increases
from one to three. The policy trained with three batches of
data performs slightly worse than the one trained with two
batches, indicating that more correction data does not always
bring better performance. This could be caused by distribution
shift as we observed different failure modes during each new
batch of data collection, and the 50 additional episodes of
data was not sufficient to cover the new distribution.

Sampling strategy during training. The start of a human
intervention contains critical information of the timing and

direction of correction. Accurate delta action predictions right
after correction starts are important for reactive corrective
behaviors. We investigate three strategies for sampling from
online correction data during training: 1. Uniform sample,
where the whole episode is sampled uniformly. 2. Denser
sample around the start of a human intervention, and 3. denser
sample only after the human intervention starts. For 2 and 3,
we uniformly increase the sample frequency four times for a
fixed period before and/or after intervention starts.

Finding: Sampling denser right after intervention starts
leads to more reactive and accurate corrections. As shown in
Fig. 12 (right), the best performance comes from densely
sampling after the beginning of interventions. Sampling
denser around the start of a human intervention also adds
more samples right before the intervention starts, which is
where humans observe signs of failures. These are mostly
negative data, and using them for training decreases the policy
success rate.

Intention Misinterpretation and tracking error. As
explained in Sec. 3, the correction data can misinterpret
the human correction behavior when tracking error is large.
During development of our method, we observed this
phenomenon on the gear insertion task, where the human
correction motion is small in magnitude and mostly aligns
with the base policy motion, both of which moves towards
the pole. As a result, the residual policy learns to pull the
gear away from the pole instead of moving it towards the
pole, causing a persistent failure. With our fixes that reduces
tracking error (equation 2 and 3), the correction data can
correctly reflect the human intention and train a residual policy
that improves success rate.

The problem does not affect the book flipping task and
the belt assembly task even before our fixes are applied.
For the book flipping task, the correction motion magnitude
is typically much larger than the robot tracking error. The
belt assembly task uses minute correction motion around
the second pulley, however, the human correction motion is
mostly vertical, in which direction the robot has little motion
and tracking error.

5 Limitation and Future Work

Base/residual trade-off. The base policy should have a
reasonable success rate for the residual policy to learn
effectively. From our experiments, we recommend starting
to collect correction data for the residual policy when the
base policy has at least 10% ~ 20% success rate. A practical
question is whether to spend resources on improving the base
policy or the residual policy, given a challenging new task.
A future direction is to derive theoretical guidelines for such
trade-off between the base and residual improvements.
Incorporate more data. Our work learns corrections
efficiently using 50~ 100 episodes. The cost of this efficiency
is the lack of extreme robustness under large variations, which
does require more information about the problem dynamics.
There are two interesting questions to ask for future work: 1)
how can more data/information be absorbed by the residual
policy to make it adapt to more diverse scenarios? Can we
use a world model/dynamics model to guide the correction
behavior under novel perturbations? An example work in this
direction is Sun and Song (2025). 2) Is there better policy
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architecture than a shallow MLP? Throughout this work, we
use a MLP as the action head of our Compliant Residual
Policy and directly regress the actions. We briefly explored
popular alternatives such as a probabilistic MLP Duan et al.
(2016); Haarnoja et al. (2018) or Flow Matching Lipman
et al. (2022); Black et al. (2024) in Sec. A.4, but found no
significant difference. Although a simple MLP already works
well in our tasks, we believe it may experience difficulty
for complex tasks that involve more distinctive action multi-
modalities, for which more expressive policy formulations
might be useful.

More flexible/intuitive data collection interface. Our data
collection system is based on kinesthetic teaching. Although
it provides richer data with higher quality than teleoperation
as explained in the paper, it may require more labor during
training data collection since the demonstrator needs to
grasp the handle on the robot. Two interesting future work
directions include 1) develop teleoperation systems with the
same intuitive and smooth correction data collection, and 2)
develop intuitive interface for manipulation with more DoFs,
such as bi-manual or dexterous hands manipulation.

6 Conclusion

In this work, we evaluate practical design choices for DAgger
in real-world robot learning, and provide a system, CR-
DAgger, to effectively collect human correction data with
a Compliant Intervention Interface and improve the base
policy with a Compliant Residual Policy. We demonstrate
the effectiveness of our designs by comparing them with a
variety of alternatives on four contact-rich manipulation tasks.
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A Technical Appendices and
Supplementary Material

A1

Our software system consists of three independent loops:

Controller Architecture

1. The base policy loop that runs the diffusion policy.
The base policy loop updates at about 1Hz, each time
predicts 32 frames of actions corresponding to 3.2s
of future robot positions. In this work we have not
optimized the implementation for computation speed.

2. The residual policy loop that runs at approximately
50Hz, each time predicts five frames of delta actions
corresponding to 0.1s of delta positions. The delta
actions are added to the corresponding base policy
actions based one time, before being sent to the low-
level compliance controller for execution. The loop rate
is limited by our current implementation and can be
improved if needed.

3. The admittance controller loop that runs at exactly
500Hz. This loop implements 6D Cartesian compliance
on the robot. It takes reference positions and forces
from the residual policy. When there is zero reference
force and no external force, the admittance controller
lets the robot track the reference position precisely.
When external force exists, the robot will deviate from
the reference position like a spring centered on the base
policy output position.

Apart from the above controller/policy loops, each hardware
(e.g. camera, force-torque sensor) has a standalone driver
loop maintaining 1. communication with the hardware, and 2.
buffers for action and feedback for this hardware.

We choose admittance control to implement compliance
in this work, since the Universal Robot we use has high
position-tracking accuracy and is not back-drivable. We open-
sourced our implementation at https://github.com/
yvifan—-hou/force_control. A more through review
of compliance controller implementations can be found
in Lynch and Park (2017) and Villani and De Schutter (2016).

A.2 Stage-Wise Success Rate

We report the success rate of the book flipping task into three
key stages. Fig. 14 below is a more detailed version of Fig. 9,
which reports all the task success rates by stages.

A.3 Correction Data Decomposition

As mentioned in the “Training strategy” part of § 3.2, we
used two strategies to ensure the residual policy behaves
stably around low correction data regions. The first strategy
is to include the no correction portion of online data for
training and label them with zero residual actions. The second
strategy is to collect a few trajectories (15 out of the 50 total
correction episodes) in which the demonstrator marks the
whole trajectory as correction, even when the correction is
small or zero. In practice, we find that the first strategy works
better when the base policy is more stable and has a higher
success rate, while the second strategy works better otherwise.
In our experiments, we use the first strategy for the book


https://github.com/yifan-hou/force_control
https://github.com/yifan-hou/force_control
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Figure 14. Stage-wise Success rates. Each row represents the results for one task, while each column shows the success rate up
to the corresponding stage.

flipping task and use the second strategy for the other three capacitive F/T sensors Choi et al. (2025) and vision-based

tasks. tactile sensors Yuan et al. (2017); Liu et al. (2023); Bauza
et al. (2024).

A.4 Compatrison of Policy Structures

To further explore alternative residual policy formulations
beyond the standard MLP action head used in our experiments,
we tested two additional popular policy structures on
the belt assembly task: a probabilistic MLP Duan et al.
(2016); Haarnoja et al. (2018) and a Flow-Matching
Transformer Lipman et al. (2022); Black et al. (2024).
The probabilistic MLP extends the original deterministic
MLP by outputting both the mean and log-variance of a
Gaussian distribution over actions and sampling actions from
this distribution. The Flow Matching Transformer uses a
transformer-based conditional flow model that predicts action
velocities along a continuous time trajectory, enabling ODE-
based sampling over the residual action distribution instead
of one-step prediction.

We trained residual policies with these two models using
the same data under identical configurations as the original
MLP structure on the belt assembly task. The probabilistic
MLP achieves a success rate of 100%, and the Flow Matching
Transformer achieves 90% (each ablation was evaluated over
10 rollouts). Compared to the success rate of 96.8% achieved
by the original MLP, the improvements from more expressive
policy structures are inconclusive. The failure modes in this
task are relatively homogeneous. We hypothesis that the
benefits of expressive policy structure could be more evident
for tasks that exhibit more distinctive action multi-modality
and leave the more detailed exploration to future work.

A.5 Experiments Compute Resources

We use a desktop with a NVIDIA GeForce RTX 4090 GPU
for training and deployment.

A.6 Hardware Design

Our kinesthetic correction hardware setup features a tool
interface that allows task-specific tool swapping. For the
book flipping task, we designed a customized fork-shaped
tool that can easily insert under the books and flip them.
For the belt assembly task, we used a standard WSG-50
gripper and fin-ray fingers Chi et al. (2024). An interesting
future direction is to leverage generative models for automatic
manipulator design Xu et al. (2024b). Future work can also
incorporate other types of force or tactile sensors, such as
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